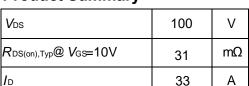
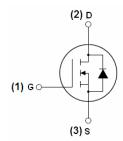


Feature

- High density cell design for lower Rdson
- Fully characterized avalanche voltage and current
- Good stability and uniformity with high EAS
- Excellent package for good heat dissipation


Application


- Power switching application
- Hard switched and High frequency circuits
- Uninterruptible power supply

TO-263

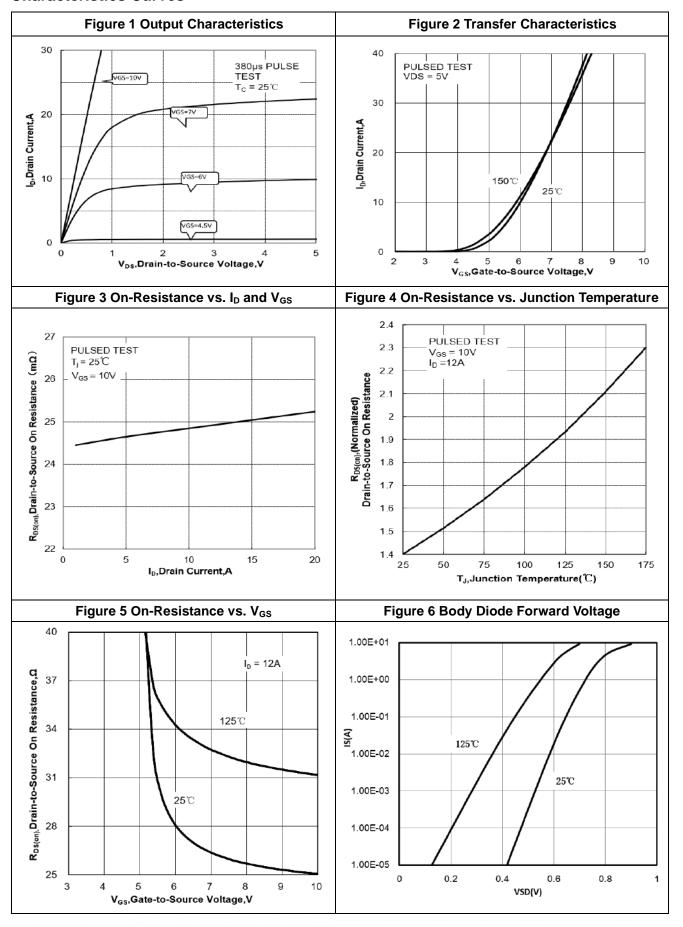
Product Summary

Parameter	Symbol	Limit	Unit
Drain-Source Voltage	V _{DS}	100	V
Gate-Source Voltage	V _G s	±20	V
Drain Current-Continuous	I _D	33	А
Drain Current-Pulsed (Note 1)	I _{DM}	132	А
Maximum Power Dissipation(Tc=25°C)	P _D	70	W
Single pulse avalanche energy ^(Note 2)	Eas	96	mJ
Operating Junction and Storage Temperature Range	T_{J} , T_{STG}	-55 To 175	°C

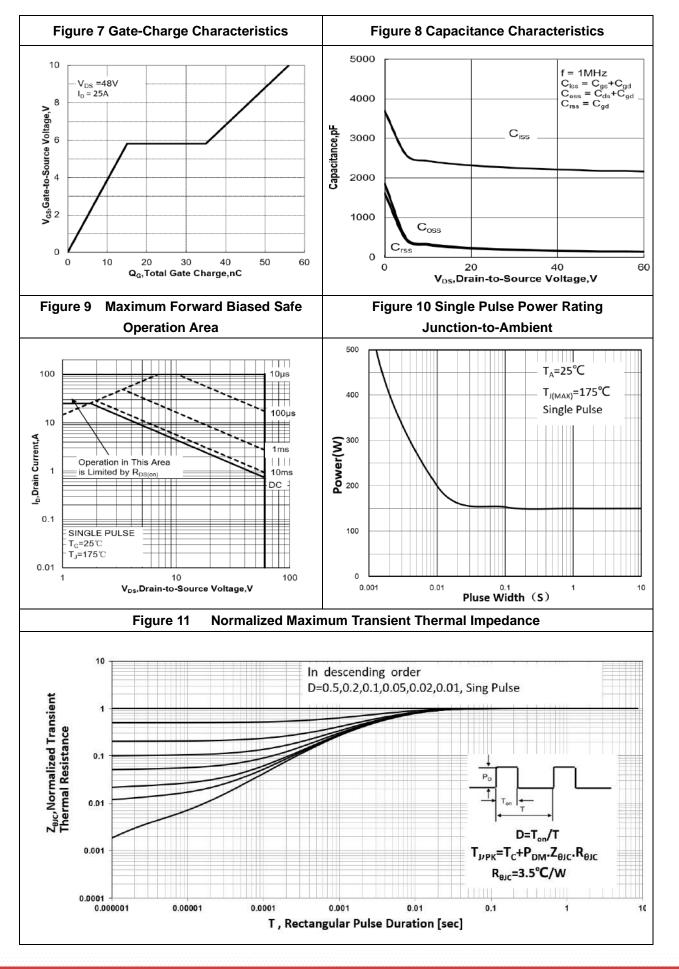
Thermal Characteristic

Thermal Resistance,Junction-to-Case	Rелс	1.15	°C/W
Thermal Resistance, Junction-to-Ambient (PCB mount)	R _{θJA}	40	°C/W

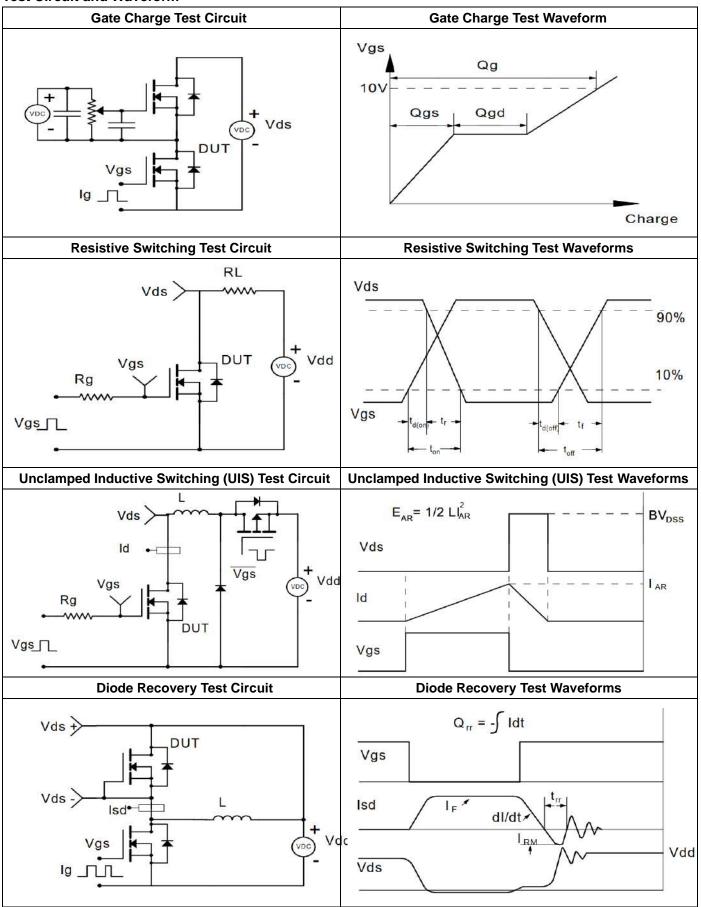
Parameter	Symbol	Condition		Тур	Max	Unit
Off Characteristics	<u> </u>			•	•	•
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250μA		-	-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =100V,V _{GS} =0V	-	-	1	μΑ
Gate-Body Leakage Current	Igss	V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA
On Characteristics						•
Gate Threshold Voltage	V _{GS(th)}	V _{DS} =V _{GS} ,I _D =250µA	1	1.7	2.5	V
Davis Course On Chata Daviston - (Note 3)	5	V _{GS} =10V, I _D =12A	-	31	37	mΩ
Drain-Source On-State Resistance ^(Note 3)	R _{DS(ON)}	V _{GS} =4.5V, I _D = 8A	-	32	42	
Forward Transconductance	g FS	V _{DS} =5V,I _D =15A		11	-	S
Dynamic Characteristics						•
Input Capacitance	Clss	- V _{DS} =25V,V _{GS} =0V, - f=1.0MHz		2300	-	pF
Output Capacitance	Coss			215	-	pF
Reverse Transfer Capacitance	Crss			195	-	pF
Switching Characteristics (Note 4)						
Turn-on Delay Time	t _{d(on)}		-	29	-	nS
Turn-on Rise Time	t _r	V _{DD} =50V, ID=20A,		13	-	nS
Turn-Off Delay Time	t _{d(off)}	V _{GS} =10V,R _{GEN} =10Ω	-	58.2	-	nS
Turn-Off Fall Time	t _f		-	13.4	-	nS
Total Gate Charge	Qg	V _{DS} =80V,I _D =20A V _{GS} =10V		55	-	nC
Gate-Source Charge	Qgs			15	-	nC
Gate-Drain Charge	Q_{gd}			20	-	nC
Drain-Source Diode Characteristics						•
Diode Forward Voltage	V_{SD}	V _{GS} =0V,I _S =20A	-	-	1.2	V
Reverse Recovery Time	T _{rr}	Tj=25℃,IF=10A,di/dt=100A/uS ^(note3)		58	-	nS
Reverse Recovery Charge	Qrr			110	-	nC

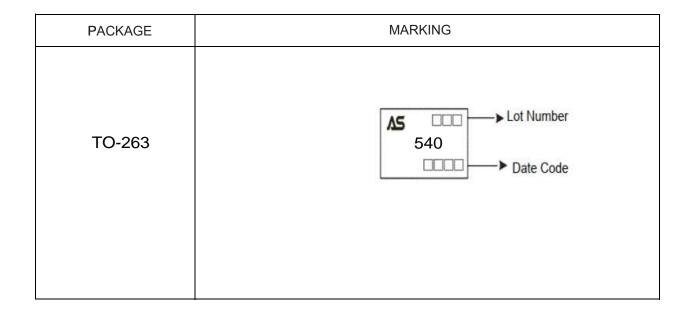

Notes:

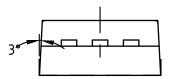
- 1. Repetitive Rating: Pulse width limited by maximum junction temperature. 2. E_{AS} condition :T $_{j}$ =25°C, V_{DD} =50V, V_{GS} =10V,L=0.5mH,Rg=25 Ω 3. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2%.

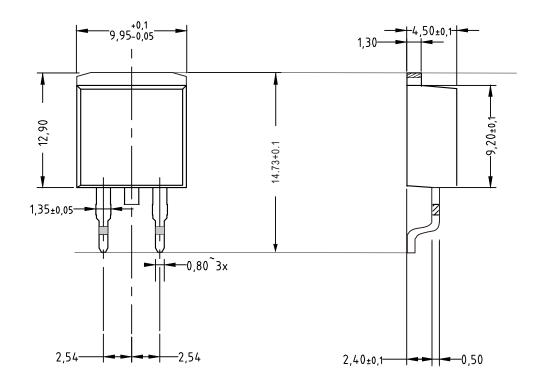

- 4. Guaranteed by design, not subject to production.

Characteristics Curves




Test Circuit and Waveform




Ordering and Marking Information

Ordering Device No.	Marking	Package	Packing	Quantity
ASDM540G-R	540	TO-263	Tape&Reel	800/Reel

TO-263

IMPORTANT NOTICE

ShenZhen Ascend Semiconductor incorporated MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

ShenZhen Ascend Semiconductor Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. ShenZhen Ascend Semiconductor Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does ShenZhen Ascend Semiconductor Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume.

all risks of such use and will agree to hold Ascendsemi Incorporated and all the companies whose products are represented on ShenZhen Ascend Semiconductor Incorporated website, harmless against all damages.

ShenZhen Ascend Semiconductor Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel. Should Customers purchase or use ShenZhen Ascend Semiconductor Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold ShenZhen Ascend Semiconductor Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.

www.ascendsemi.com