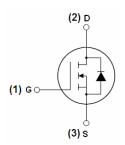


Features

- Advanced Trench Technology
- Provide Excellent RDS(ON) and Low Gate Charge

Application


- Load Switch
- PWM Application

Product Summary

V ps	30	V
R DS(on),TYP@ VGS=10 V	5.0	mΩ
lo	80	Α

Absolute Maximum Ratings (Tc=25℃ unless otherwise specified)

Symbol	Parameter		Max.	Units
V _{DSS}	Drain-Source Voltage		30	V
V _{GSS}	Gate-Source Voltage		±20	V
I_	Continuous Drain Current	T _C = 25°C	80	Α
l _D	Continuous Drain Current	T _C = 100℃	50	Α
I _{DM}	Pulsed Drain Current note1		320	Α
Eas	Single Pulsed Avalanche Energy note2		88	mJ
P _D	Power Dissipation	T _C = 25°C	75	W
R ₀ JC	Thermal Resistance, Junction to Case		1.68	°C /\/\/
R _{θJA}	Thermal Resistance, Junction to Ambient		62	*C/W
T _J , T _{STG}	Operating and Storage Temperature Range		-55 to +175	$^{\circ}\!\mathbb{C}$

Electrical Characteristics (T_C=25°C unless otherwise specified)

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Units	
Off Charac	cteristic		I .	Į.			
V _{(BR)DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V,I _D =250µA	30	-	_	V	
loss	Zero Gate Voltage Drain Current	V _{DS} =30V, V _{GS} = 0V, T _J =25℃	-	-	1		
		V _{DS} =24V, V _{GS} = 0V, T _J =125°C	-	-	10	uA	
Igss	Gate to Body Leakage Current	V _{DS} =0V,V _{GS} = ±20V	-	-	±100	nA	
On Charac	cteristics						
V _{GS(th)}	Gate Threshold Voltage	V _{DS} = V _{GS} , I _D =250µA	1.0	1.6	2.5	V	
	Static Drain-Source on-Resistance	V _{GS} =10V, I _D =20A	-	5.0	6	mΩ	
$R_{DS(on)}$	note3	V _{GS} =4.5V, I _D =10A	-	6.8	12		
g FS	Forward Transconductance	V _{DS} =5V, I _D =10A	-	20	-	S	
Dynamic C	Characteristics						
C _{iss}	Input Capacitance	05)/// 05)/	-	1914	_	pF	
Coss	Output Capacitance	$V_{DS} = 25V, V_{GS} = 0V,$	-	270	_	pF	
Crss	Reverse Transfer Capacitance	f = 1.0MHz	-	218	-	pF	
Qg	Total Gate Charge	\/ -45\/ L -20A	-	11.1	-	nC	
Qgs	Gate-Source Charge	V _{DS} =15V, I _D =20A, V _{GS} =4.5V	-	1.85	-	nC	
Q _{gd}	Gate-Drain("Miller") Charge	VGS -4.5V	-	6.8	-	nC	
Switching	Characteristics						
t _{d(on)}	Turn-on Delay Time		-	7.5	_	ns	
t _r	Turn-on Rise Time	V _{DS} =15V,	-	14.5	-	ns	
t _{d(off)}	Turn-off Delay Time	I_D =15A, R _G =3.3Ω,	-	35.2	-	ns	
t _f	Turn-off Fall Time	V _{GS} =10V	-	9.6	-	ns	
Drain-Sou	rce Diode Characteristics and Maxim	um Ratings	•	•			
Is	Maximum Continuous Drain to Source Diode Forward Current		-	-	80	Α	
Ism	Maximum Pulsed Drain to Source Diode Forward Current		-	-	320	Α	
VsD	Drain to Source Diode Forward Voltage	V _{GS} = 0V, I _S =30A	-	-	1.2	V	
trr	Body Diode Reverse Recovery Time		-	32	-	ns	
Qrr	Body Diode Reverse Recovery Charge	Is=30A,dI/dt=100A/µs	-	12	-	nC	

Notes:1. Repetitive Rating: Pulse Width Limited by Maximum Junction Temperature

- 2. EAS condition: TJ=25 $^{\circ}\text{C}$,VDD=25V,VGS=10V, L=0.1mH, IAS=42A, RG=25 Ω
- 3. Pulse Test: Pulse Width≤300µs, Duty Cycle≤2%

Typical Performance Characteristics

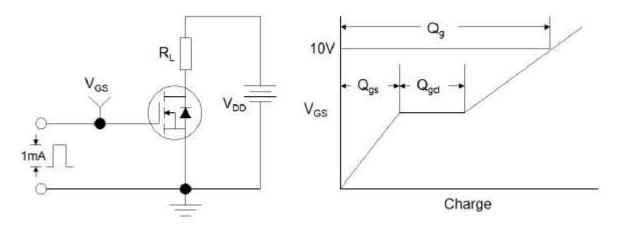


Figure1:Gate Charge Test Circuit & Waveform

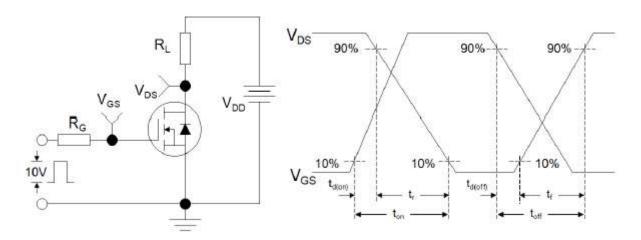


Figure 2: Resistive Switching Test Circuit & Waveforms

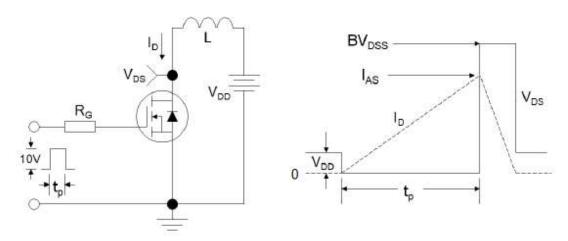
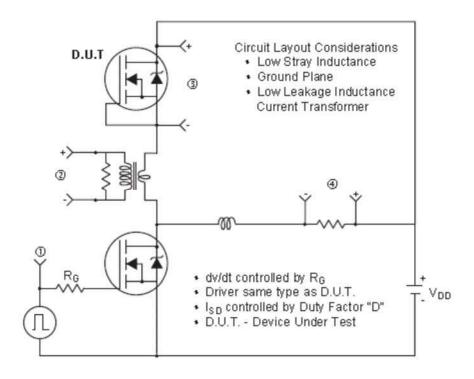



Figure 3:Unclamped Inductive Switching Test Circuit & Waveforms

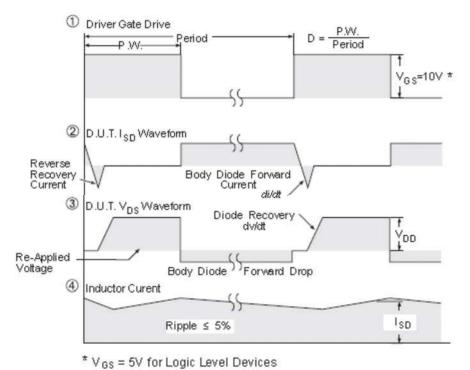
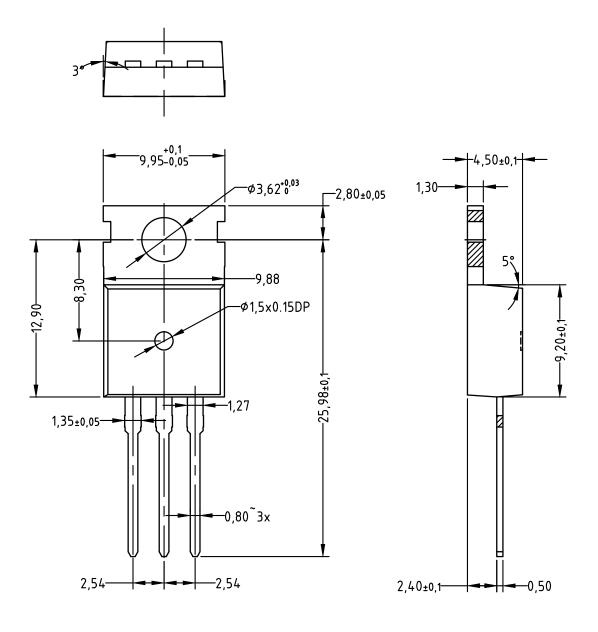


Figure 4:Peak Diode Recovery dv/dt Test Circuit & Waveforms (For N-channel)


Ordering and Marking Information

Ordering Device No.	Marking	Package	Packing	Quantity
ASDM30N80P-T	30N80	TO-220	Tube	50/Tube

PACKAGE	MARKING
TO-220	AS □□□→ Lot Number 30N80 □□□□→ Date Code

TO-220

30V N-Channel MOSFET

IMPORTANT NOTICE

ShenZhen Ascend Semiconductor incorporated MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

ShenZhen Ascend Semiconductor Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. ShenZhen Ascend Semiconductor Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does ShenZhen Ascend Semiconductor Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume.

all risks of such use and will agree to hold Ascendsemi Incorporated and all the companies whose products are represented on ShenZhen Ascend Semiconductor Incorporated website, harmless against all damages.

ShenZhen Ascend Semiconductor Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel. Should Customers purchase or use ShenZhen Ascend Semiconductor Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold ShenZhen Ascend Semiconductor Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.

www.ascendsemi.com